hydesign.weather.weather_wind_hybridization
Attributes
Classes
Atmospheric boundary layer WS and WD interpolation |
Functions
|
Auxiliar functions for WD interpolation. |
|
Function that applies interpolation to a wrf simulation. |
Module Contents
- class hydesign.weather.weather_wind_hybridization.ABL_WD(weather_fn, N_time)[source]
Bases:
openmdao.api.ExplicitComponent
Atmospheric boundary layer WS and WD interpolation
- Parameters:
hh (Turbine's hub height)
- Returns:
wst
- Return type:
wind speed time series at the hub height
- compute(inputs, outputs)[source]
Compute outputs given inputs. The model is assumed to be in an unscaled state.
An inherited component may choose to either override this function or to define a compute_primal function.
- Parameters:
inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].
outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].
discrete_inputs (dict-like or None) – If not None, dict-like object containing discrete input values.
discrete_outputs (dict-like or None) – If not None, dict-like object containing discrete output values.
- hydesign.weather.weather_wind_hybridization.interpolate_WD_linear(weather, hh)[source]
Auxiliar functions for WD interpolation.
- Parameters:
weather (pd.DataFrame) – WD time-series table for a location at multiple heights. The columns must be named WS_hh (for example WD_10, WD_50, …).
hh (float) – Elevation (of a wind turbine) to interpolate WD
- Returns:
ds_interpolated – Dataset that contains the interpolated time-series: WD and dWD_dz
- Return type:
xr.Dataset
- hydesign.weather.weather_wind_hybridization.apply_interpolation_f(wrf_ds, weights_ds, vars_xy_logz=['WSPD'], vars_xyz=['WDIR', 'RHO'], vars_xy=['UST', 'RMOL', 'TAIR', 'DIF_AVG', 'DNI_AVG'], vars_nearest_xy=[], vars_nearest_xyz=[], var_x_grid='west_east', var_y_grid='south_north', var_z_grid='height', varWD='WDIR')[source]
Function that applies interpolation to a wrf simulation.
- Parameters:
wrf_ds (xarray.Dataset) – Weather timeseries
weights_ds (xarray.Dataset) –
Weights for locs interpolation for several methods:
<xarray.Dataset> Dimensions: (ix: 4, iy: 4, iz: 5, loc: 14962) Coordinates: * loc (loc) int64 Dimensions without coordinates: ix, iy, iz Data variables: weights_x (loc, ix) float64 ind_x (loc, ix) int64 weights_y (loc, iy) float64 ind_y (loc, iy) int64 weights_z (loc, iz) float64 weights_log_z (loc, iz) float64 ind_z (loc, iz) int64 ind_x_1 (loc) int64 ind_y_1 (loc) int64 ind_z_1 (loc) int64
vars_xy_logz (list) – List of variables to be interpolated in horizontal (x,y) using finite differences and power law piecewise interpolation in z.
vars_xyz (list) – List of variables to be interpolated in horizontal (x,y) using finite differences and linear piecewise interpolation in z.
vars_xy (list) – List of variables to be interpolated in horizontal (x,y) using finite differences
vars_nearest_xy (list) – List of variables to be approximated to the nearest horizontal point (x,y)
vars_nearest_xyz (list) – List of variables to be approximated to the nearest point (x,y,z)
var_x_grid (string, default:'west_east') – Name of the variable in the weather data used as x in the interpolation
var_y_grid (string, default: 'south_north') – Name of the variable in the weather data used as y in the interpolation
var_z_grid (string, default:'height') – Name of the variable in the weather data used as z in the interpolation
varWD (string, default:'wd') – Name of the wind direction variable for ensuring it is in [0,360]
- Returns:
interp – Dataset including meso-variables timeseries, interpolated at each locs. The arrays have two dimensions: (‘Time’, ‘locs’).
- Return type:
xarray.Dataset