hpp_evaluation_p2x

HPP_evaluation_P2X.ipynb

Automatically generated by Colaboratory.

Original file is located at

https://colab.research.google.com/drive/1z4fy2dYldx_9Uft1YwqgXd2fyGinq3NU

## Evaluating the performance of a hybrid power plant with P2X using HyDesign

In this notebook we will evaluate a hybrid power plant design in a specific location.

A hybrid power plant design consists on selecting the following parameters:

Wind Plant design:

  1. Number of wind turbines in the wind plant [-] (Nwt)

  2. Wind power installation density [MW/km2] (wind_MW_per_km2): This parameter controls how closely spaced are the turbines, which in turns affect how much wake losses are present.

PV Plant design:

  1. Solar plant power capacity [MW] (solar_MW)

Battery Storage design:

  1. Battery power [MW] (b_P)

  2. Battery energy capacity in hours [MWh] (`b_E_h `): Battery storage capacity in hours of full battery power (`b_E = b_E_h * b_P `).

  3. Cost of battery power fluctuations in peak price ratio [-] (cost_of_batt_degr): This parameter controls how much penalty is given to do ramps in battery power in the HPP operation.

Electrolyzer design:

  1. Electrolyzer capacity [MW] (ptg_MW)

  2. H2 storage capacity [kg] (HSS_kg)

## Imports

Install hydesign if needed. Import basic libraries. Import HPP model assembly class. Import the examples file path.

Attributes

examples_sites

name

ex_site

longitude

latitude

altitude

input_ts_fn

input_ts

required_cols

input_ts

H2_demand_fn

H2_demand_ts

sim_pars_fn

sim_pars

hpp

##

start

clearance

sp

p_rated

Nwt

wind_MW_per_km2

solar_MW

surface_tilt

surface_azimuth

DC_AC_ratio

b_P

b_E_h

cost_of_batt_degr

ptg_MW

HSS_kg

x

outs

end

b_E_SOC_t

b_t

price_t

wind_t

solar_t

hpp_t

hpp_curt_t

P_ptg_t

P_ptg_grid_t

grid_MW

n_days_plot

m_H2_t

m_H2_demand_t

m_H2_offtake_t

m_H2_storage_t

m_H2_grid_t

LoS_H2_t

Module Contents

hpp_evaluation_p2x.examples_sites = None[source]
hpp_evaluation_p2x.name = 'Denmark_good_wind'[source]
hpp_evaluation_p2x.ex_site[source]
hpp_evaluation_p2x.longitude[source]
hpp_evaluation_p2x.latitude[source]
hpp_evaluation_p2x.altitude[source]
hpp_evaluation_p2x.input_ts_fn[source]
hpp_evaluation_p2x.input_ts = None[source]
hpp_evaluation_p2x.required_cols[source]
hpp_evaluation_p2x.input_ts[source]
hpp_evaluation_p2x.H2_demand_fn[source]
hpp_evaluation_p2x.H2_demand_ts = None[source]
hpp_evaluation_p2x.sim_pars_fn[source]
hpp_evaluation_p2x.sim_pars[source]
hpp_evaluation_p2x.hpp[source]

## ### Evaluating the HPP model

hpp_evaluation_p2x.start[source]
hpp_evaluation_p2x.clearance = 10[source]
hpp_evaluation_p2x.sp = 360[source]
hpp_evaluation_p2x.p_rated = 4[source]
hpp_evaluation_p2x.Nwt = 90[source]
hpp_evaluation_p2x.wind_MW_per_km2 = 5[source]
hpp_evaluation_p2x.solar_MW = 80[source]
hpp_evaluation_p2x.surface_tilt = 50[source]
hpp_evaluation_p2x.surface_azimuth = 210[source]
hpp_evaluation_p2x.DC_AC_ratio = 1.5[source]
hpp_evaluation_p2x.b_P = 40[source]
hpp_evaluation_p2x.b_E_h = 4[source]
hpp_evaluation_p2x.cost_of_batt_degr = 10[source]
hpp_evaluation_p2x.ptg_MW = 200[source]
hpp_evaluation_p2x.HSS_kg = 3000[source]
hpp_evaluation_p2x.x[source]
hpp_evaluation_p2x.outs[source]
hpp_evaluation_p2x.end[source]
hpp_evaluation_p2x.b_E_SOC_t[source]
hpp_evaluation_p2x.b_t[source]
hpp_evaluation_p2x.price_t[source]
hpp_evaluation_p2x.wind_t[source]
hpp_evaluation_p2x.solar_t[source]
hpp_evaluation_p2x.hpp_t[source]
hpp_evaluation_p2x.hpp_curt_t[source]
hpp_evaluation_p2x.P_ptg_t[source]
hpp_evaluation_p2x.P_ptg_grid_t[source]
hpp_evaluation_p2x.grid_MW[source]
hpp_evaluation_p2x.n_days_plot = 7[source]
hpp_evaluation_p2x.m_H2_t[source]
hpp_evaluation_p2x.m_H2_demand_t[source]
hpp_evaluation_p2x.m_H2_offtake_t[source]
hpp_evaluation_p2x.m_H2_storage_t[source]
hpp_evaluation_p2x.m_H2_grid_t[source]
hpp_evaluation_p2x.LoS_H2_t[source]